
DAGSTUHL SEMINAR 17202

CHALLENGES AND OPPORTUNITIES OF USER-LEVEL FILE SYSTEMS FOR HPC

BUILDING BLOCKS FOR
USER-LEVEL HPC
STORAGE SYSTEMS

erhtjhtyhy

PHIL CARNS
Mathematics and
Computer Science Division
Argonne National Laboratory

May 14 – 19 , 2017

Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH

WHY WOULD WE STILL TALK ABOUT DATA

SERVICE BUILDING BLOCKS?

(OR ULFS, ULSS, OR MIDDLEWARE BUILDING

BLOCKS…)

THE EVOLUTION OF STORAGE SERVICES

� We’ve drawn this figure (or

versions of it) for a long time

� Has a lot in common with

scalable Internet services

� Key technologies: block

devices, sockets, pthreads,

kernel drivers

� How did we tie them

together? Did it really matter

that much when operations

took milliseconds to

complete?

Let’s reflect on our roots: a conventional storage service architecture

3

THE EVOLUTION OF STORAGE SERVICES
Next generation storage service architecture:

4

� Updated version of the same

storage service diagram

� Key technologies: NVRAM,

RDMA, dynamic services,

higher concurrency

� Latency and jitter are more

of a problem now than ever

� The high level dynamic

service organization would

look familiar to an Amazon

Web Services user, though

HOW DO WE GET THERE?

Technology transitions

Block devices Byte-addressable memory

Sockets Small messages and RDMA

Pthreads or event loops Lightweight threads

Monolithic services Dynamic service groups

Remote daemons Local and remote daemons

5

Every man for

himself?

Maybe we can share

engineering components

and free up time for

research!

HOW DO WE GET THERE?

Technology transitions Example components

Block devices Byte-addressable memory NVML / libpmem

Sockets Small messages and RDMA Mercury RPCs

Pthreads or event loops Lightweight threads Argobots

Monolithic services Dynamic service groups SSG

Remote daemons Local and remote daemons Mercury component composition

6

USER-LEVEL DATA SERVICE BUILDING BLOCK

EXAMPLES

EXAMPLE SERVICE
DATA PATH

8

The keys to optimization have changed:

� Avoiding privileged mode transitions

� Avoiding context switches in general

� Avoiding memory copies

User-space network

access (could be

OFI/libfabic)

User-space

storage device

access

“Glue” holding

resources together

P. Carns et al., “Enabling NVM for data-intensive scientific

services,” in 4th Workshop on Interactions of NVM/Flash with

Operating Systems and Workloads (INFLOW 16), 2016.

Looks like many “layers”, but that’s a red herring

when fishing for optimizations as long as the

interactions between the layers are efficient:

BRIEFLY: LIBPMEM (NVML)

� A user space library for access to persistent memory regions, by Intel

� Just load/stores, right? What would you want an API for?
– Well-defined control over persistence

– Well-defined device naming/reference conventions

– A family of derived libraries for data structures that understand persistent memory

references, transactions, atomicity, etc:
• Libpmemobj: object storage

• Libpmemblk: fixed-size blocks

• Libvmmalloc: malloc() replacement

…

• Pmemfile: file system in user space with no kernel VFS or block device

– (i.e., a user-level file system)

– http://pmem.io/nvml/

COMMUNICATION

MERCURY:
A HIGH PERFORMANCE RPC FRAMEWORK

Mercury is an RPC system for use in the development of high performance
system services. Developed by the HDF Group and ANL

� Portable across systems and network technologies

� Efficient bulk data movement to complement control messages

� Builds on lessons learned from IOFSL, Nessie, lnet, and others

� https://mercury-hpc.github.io/

Client Server

RPC proc

Network Abst ract ion Layer

RPC proc

M et adat a (unexpect ed
+ expect ed messaging)

Bulk Data (RM A t ransfer)

MERCURY: A LITTLE MORE CONTEXT

� It’s not a competitor to Portals, verbs, libfabric, GNI, etc.
– …because it’s not a communication transport library

– It sits on top of transport libraries (using an plugin API for network abstractions)

� Provides simplifications for service implementers:
– Remote procedure calls

– RDMA abstraction (or emulation)

– Protocol encoding

– Clearly defined progress and event model

Client Server

RPC proc

Network Abst ract ion Layer

RPC proc

M et adat a (unexpect ed
+ expect ed messaging)

Bulk Data (RM A t ransfer)

– No restrictions on client/server roles

– No global fault domain

(MPI_COMM_WORLD)

APPLYING MERCURY TO HPC DATA SERVICES

� Mercury has an abstraction layer for network transports. Notable examples:
– OFI: via native plugin (Intel contribution)

– IB: via CCI plugin (ORNL contribution)

– TCP/IP: via BMI plugin

– SHMEM: via internal plugin

– Local: via internal code path, skips plugins

� There is a price, though: Mercury is minimal and fast, but a challenge to program

(it is inherently event-driven)
– We added a layer called “Margo” that adds an easy-to-use sequential interface

– Relies on user-level thread scheduling for concurrency

– Greatly simplifies service development while retaining native performance

– https://xgitlab.cels.anl.gov/sds/margo/

CONCURRENCY

WHAT PROBLEM IS ARGOBOTS SOLVING BESIDES
MAKING MERCURY A BIT EASIER TO PROGRAM?
� Observation from earlier: many cores, and more I/O concurrency than there are

cores on storage service nodes

15

� Example: N concurrent

replicated write operations on

one server daemon

� Illustrated as a state machine

in this figure (the arrows are

weird; blame powerpoint)

� Each request involves multiple

steps: some will block, some

will branch

� The server needs to keep

track of where each request is

in state machine

� Confounding matters, each

resource probably has its own

progress/completion model

WE’VE TRIED A FEW PRODUCTIVITY SOLUTIONS…

� Threads (per request, or thread pools for various steps)
– Context switch cost could be high

– Might cause undue contention on network resource (i.e. who is driving the device?)

– Wasteful if the threads are there only to wait, not compute

� Event-driven (events from async resources or from thread pools)
– Has potential to avoid extraneous context switch cost

– Maintenance and developer ramp-up cost is high due to stack ripping

� PVFS state machines
– Formalize the event-driven transitions and makes them easier to conceptualize

– Still stack ripping, though

� Aesop (from Triton/ASG project)
– C language extensions and runtime library

– Hides stack ripping and continuation logic, looks (mostly) like pleasant linear C code

– The dark side of Aesop: trades a service maintenance burden for an even worse

language extension maintenance burden!
16

ARGOBOTS:
A LIGHTWEIGHT THREADING/TASKING FRAMEWORK

Overview
� User-level threading: lightweight context

switching among many concurrent threads

� Use multiple cores and control delegation
of work to those cores

� http://argobots.org/
Key features for data services
� Lets us track state of many concurrent

operations with simple service code paths
and low OS resource consumption

� Custom schedulers (i.e., to implement
priorities, or limit CPU usage)

� Primitives that facilitate linkage to external
resources

ArgobotsArgobots

coreProcessor

Programming Models
(MPI, OpenMP, Charm++, PaRSEC, …)

Programming Models
(MPI, OpenMP, Charm++, PaRSEC, …)

U User-Level

Thread
TT Tasklet

Lightweight

Work Units

E
x
e
c
u
ti
o
n

S
tr

e
a
m

E
x
e
c
u
ti
o
n

S
tr

e
a
m

Private

pool

Private

pool

Shared pool

U U

U TT

TTTTU TTU

E
x
e
c
u
ti
o
n

S
tr

e
a
m

E
x
e
c
u
ti
o
n

S
tr

e
a
m

E
x
e
c
u
ti
o
n

S
tr

e
a
m

E
x
e
c
u
ti
o
n

S
tr

e
a
m

MORE THAN JUST FAST DATA PATHS: HOW TO

ORGANIZE DYNAMIC SERVICES

GLUING MULTIPLE COMPONENTS TOGETHER

� Consider the example of 2 or more simple microservices that are combined to

present a more complex data model

– One service/component for bulk data storage

– One service/component for key/value indexing

– Combined, they allow you to create objects with custom names and indices

� E.g., Create a 100 MiB object named “Fred”

1. Write 100 MiB into bulk data region

2. Put key=“Fred” value=data_region_reference into K/V store

� Complete file systems or scientific data models may require more complex

combinations (multiple dimensions, other data structures, etc.)

Or: a story of software engineering with Mercury APIs

19

COMPOSED AND CO-LOCATED SERVICES

� Expose RPC API for each microservice to the

client node

� Present a “composed library” to the application

that so that it can create Fred objects

� Flexible: services could be anywhere

� Performance problem: 2 RPC round trips

where you would only expect one in a

conventional monolithic service

� Compound/chain RPCs could solve this in

theory, but difficult to implement and limit

flexibility20

Option 1 (“We can do this the slow way”)

COMPOSED AND CO-LOCATED SERVICES

� Composed library exchanges RPCs with a

composed service

� The composed service doesn’t do much:

– Delegates RPCs to microservices

– Propagates RDMA token (Mercury bulk handle)

to the service(s) that will drive data transfer

� More generally, we can mix and match remote

and non-remote components with the same

API conventions; no change to service

implementation

� Key question: how fast is local RPC delegation?

We will rely on fast paths in Mercury for intra-

process and intra-node channels21

Option 2 (“I/O forwarding for high-level APIs”)

HOW DO WE ORGANIZE MULTIPLE DYNAMIC
SERVICES?

22

Client

� SSG: scalable service groups

� https://xgitlab.cels.anl.gov/sds/ssg

� Adds group membership to Mercury

– Group bootstrapping / wire-up / launch

• Config file

• MPI communicator

• PMIx (one day)?

– Provides identifiers to concisely reference

groups of processes

– Provides optional fault detection

� We think of this, combined with a pub/sub

registry service, as scaffolding for assembling

composable services

BACK TO THE BIG PICTURE

OBSERVATIONS

� New architectures and new hardware resources call for new building blocks for

user-level storage services

� We can potentially speed up development and ease maintenance by sharing

these building blocks

– These will never be optimal for every use case

– Consider when expertise/resources/use case warrant hand coding

� Ideally we can share not only low-level building blocks, but fundamental

microservices: compose them and augment to serve use case

� Clear at this point in seminar that we need flexibility in provisioning and

composition too

� http://www.mcs.anl.gov/research/projects/mochi/

– Thanks to many at ANL, The HDF Group, LANL, and CMU24

www.anl.gov

THANK YOU!

THIS WORK WAS SUPPORTED BY THE U.S. DEPARTMENT OF

ENERGY, OFFICE OF SCIENCE, ADVANCED SCIENTIFIC COMPUTING

RESEARCH, UNDER CONTRACT DE-AC02-06CH11357.

THIS RESEARCH USED RESOURCES OF THE ARGONNE LEADERSHIP

COMPUTING FACILITY, WHICH IS A DOE OFFICE OF SCIENCE USER

FACILITY SUPPORTED UNDER CONTRACT DE-AC02-06CH11357.

